18.152 PROBLEM SET 6 due May 10th 11:30 pm.

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. For $\Omega = (-\pi, \pi) \subset \mathbb{R}$, show the following statements.

- (1) u(x) = |x| has a weak derivative.
- (2) If u(x) = 1 for x > 0 and u(x) = 0 for $x \le 0$, then u(x) does not have a weak derivative.
- (3) For $f(x) = \sin(|x|)$, u(x) = -f(x) is not a weak solution to the Dirichlet problem u'' = f in Ω and u = 0 on Ω .
- (4) Let $I_k = (\frac{k-3}{2}\pi, \frac{k-1}{2}\pi)$ where k = 1, 2, 3. Suppose $f \in C_c^{\infty}(\Omega)$, and we have a partition of unity $\varphi_k \in C_c^{\infty}(I_k)$ with $\sum_{k=1}^{3} \varphi_k = 1$. Assume that $u^k \in C^{\infty}(\overline{I_k})$ is the smooth solution to $(u^k)'' = f\varphi_k$ in I_k and $u^k = 0$ on ∂I_k . Then, $u = u^1 + u^2 + u^3$ satisfies u'' = f in $\Omega \setminus \{-\pi, 0, \pi\}$. $\Omega \setminus \{-\frac{\pi}{2}, 0, \frac{\pi}{2}\}$ and u = 0 on $\partial\Omega$. However, u is not necessarily a weak solution.

Hint(2): Suppose u' = v, and show v = 0 in $\Omega \setminus \{0\}$.

Hint(3): Find a weak derivative u' and use the definition of the weak solution directly with choosing appropriate smooth functions $\varphi \in C_c^{\infty}$. It'd be helpful to use the integration by parts on each domain where f is smooth.

Problem 2. Suppose that $u \in C^{\infty}(\Omega)$ solves $\Delta u = f$ in Ω for $f \in C^{\infty}(\Omega)$ and u = 0 on $\partial \Omega$. Then, given a compact set $K \subset \Omega$, there exists some constant C depending on K, Ω, f , and the (multiple order) derivatives of f such that

$$\sup_{K} |u| \le C.$$

Hint: For some $V \subset \Omega$ containing K, $\|\eta \nabla^k u\|_{L^2(V)}$ for sufficiently large k where $\eta \in C_c^{\infty}(V)$. Then, apply the Sobolev inequality.

Problem 3. Let us define $l^2(\mathbb{R}^\infty) = \{v \in \mathbb{R}^\infty : \sum_{i=1}^\infty u_i^2 < +\infty\}.$

- (1) Show that $\langle v, w \rangle = \sum_{i=1}^{\infty} v_i w_i$ is an inner product for in $l^2(\mathbb{R}^{\infty})$. (2) Show that $l^2(\mathbb{R}^{\infty})$ is a Hilbert space.
- (3) Find a divergent sequence $\{v_i\}_{i=1}^{\infty} \subset l^2(\mathbb{R}^{\infty})$ satisfying $\|v_i\|_{l^2} = 1$.

Hint(1): To begin with, one must show the well-definedness of \langle , \rangle , namely $S_n = \sum_{i=1}^n v_i w_i$ converges as $i \to \infty$. Perhaps, one can obtain this by showing that $\{S_n\}$ is a Cauchy sequence.

Problem 4. Find a divergent sequence of functions $\{u_i\}$ in $L^2(0, 2\pi)$ such that $||u_i||_{L^2(0,2\pi)} = 1$. Then, show that the sequence you find converges weakly in $L^2(0, 2\pi)$.